This article discusses how several hypotheses about change in discrete variables can be
tested on data obtained in a longitudinal study. A first class of hypotheses pertain to the
invariance of certain characteristics of marginal distributions. A second class of hypoth-
eses derive from assumptions about the causal relations between the variables. In this
article, the authors show how all these hypotheses can be tested by means of a general-
ization of log-linear modeling developed by Lang and Agresti. By means of the same ap-
proach, it is also possible to test conjunctions of several hypotheses from both classes.
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1. INTRODUCTION

In a longitudinal panel study, several kinds of hypotheses about
change in the variables can be tested. A first type of hypothesis per-
tains to changes over time in certain aspects of the marginal or condi-
tional distributions of repeatedly observed random variables. This
type of hypothesis will be referred to as the homogeneity hypothesis.
Testing homogeneity hypotheses does not always require a longitudi-
nal panel design, since many hypotheses about marginal or condi-
tional distributions can also be tested on data from independent samples
in a cross-sectional study. Testing these hypotheses in a longitudinal
study requires, however, a different approach that takes into account
the fact that the marginal distributions are not observed in independent
samples but are based on the same sample and, hence, are not statisti-
cally independent.

A second class of hypotheses pertain to estimating and testing
causal path models for repeatedly observed random variables. In for-
mulating and testing models of this kind, the temporal order between
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different variables has to be taken into account. Moreover, applying
causal path models is only possible if some of the variables can be seen
as independent variables that have causal effects on other dependent
variables.'

Although all these hypotheses can be formulated for continuous
and for discrete variables, in this article only the case of discrete cate-
gorical variables will be considered. Several authors (Duncan 1980,
1981; Clogg, Eliason, and Grego 1990; Hagenaars 1992) have formu-
lated various homogeneity hypotheses that can be studied in longitu-
dinal research with discrete variables.

Asanexample, let X » X " Yl, and Y2 represent the scores on two vari-
ables X and Y measured at two time points, and let Zbe a time-invariant
explanatory variable that is measured at the first time period. Their
joint probability distribution will be denoted by p(Z, X 9 Y » Xz, Yz). To
represent marginal distributions, the variables over which the joint
distribution is marginalized are replaced by a + symbol. So, p(+, X , +,
X,, +) represents the marginal distribution of (X, X,), which is
obtained by integrating or summing the original joint distribution over
Z,Y o and Yz.

The homogeneity hypotheses discussed by the authors mentioned
above can be further classified into two broad categories. First, some
homogeneity hypotheses pertain to questions about the invariance of
various marginal distributions. The hypothesis of whether there is net
change in variable X can be stated in terms of a comparison of the two
marginals p(+, Xl, +, +,+) and p(+, +, +, X2, +). Similarly, the hypothe-
sis that the bivariate distribution of (X, Y) remains invariant over time
can be investigated by comparing the marginals p(+, X, ¥, +, +) and
p(+, +, +, Xz, Yz). Moreover, all hypotheses of this kind can be speci-
fied separately for fixed values of the time-invariant explanatory vari-
able Z. For instance, a comparison of the marginals p(z, X,Y,+ +)
and p(z, +, +, X, Y,) for specific values of z may indicate for which
subpopulations invariance of the distribution of (X, ¥) holds and for
which subpopulations it does not. Second, some homogeneity hypoth-
eses pertain to certain specified aspects of the marginal distributions
of the random variables involved. Instead of asking whether the
bivariate marginal distribution of (X, Y) is invariant over time, one can
ask whether the association between the variables remains constant.
For discrete variables, problems of association are commonly formula-
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ted in terms of odds ratios, or coefficients (such as Goodman and
Kruskal’s gamma or Kendall’s tau) derived from these ratios. In an
attempt to assess the direction of causal influence, Duncan (1981)
extensively discussed the way in which equality of the cross-lagged
association could be tested. If the association between X, and Y, is
stronger than the association between X, and Y, the hypothesis that X
causes Y is much more reasonable than the hypothesis that Y causes X.
If more than two measurement periods are involved in the panel study,
Hagenaars (1992) noted that still more detailed questions can be asked.
If the distribution of Y changes over time, is the change from time
period 1 to time period 2 the same as the change from time period 2 to
time period 3?

A third class of homogeneity hypotheses that will be considered in
this article pertain to the invariance of certain conditional distribu-
tions. Suppose that X is in some sense an independent variable that
causally influences the dependent variable Y. To investigate whether
changes in X cause changes in Y, it might be reasonable to assume that
the conditional distribution of Y given X does not change over time.
This invariance can be investigated by testing whether

p(+,x,y,+,4) _ pl++,+,x,)
p+x4++4)  p(+++,x,4)

for all x and y. In a more detailed analysis, one can test whether this
invariance holds for different values of the explanatory variable Z.
Another example of a situation in which invariance of conditional dis-
tributions may be an interesting hypothesis to test is a longitudinal
study in which the same variable X is measured at three time periods.
In such a study, it may be relevant to test whether the conditional dis-
tribution of X, given X, is the same as the conditional distribution of X;
given X,. If this hypothesis of invariance is sustained, the transitions
between values of the same variable are governed by a stationary first-
order Markov process.

As stated earlier, panel studies not only allow the study of homoge-
neity hypotheses but also make it possible to investigate hypotheses
about the causal relations between repeatedly measured variables. As
an example, consider a situation in which a time-invariant explanatory
variable Z is measured at the first time period, and in which an indepen-
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dent variable X and a dependent variable Y are measured at two differ-
ent time periods. For these data, one might be interested in estimating
the effects of Z and X on Y at both time periods. A possible model for
the causal influences between the five observed variables is depicted
in Figure 1.

Note that in this article, the graphical representations of causal mod-
els should be read as path diagrams in the sense of Goodman (1973).
In such path diagrams, a directed arrow from variable A to variable B
represents the direct effect variable A is assumed to have on variable B.
These diagrams should not be interpreted as graphical models in the
sense of Whittaker (1990) or Lauritzen (1996), where “graphical”
actually means “graph-theoretical.”

The model shown in Figure 1 makes the following assumptions
about the causal relationships between the five variables involved:

1. Zand X,, whose association is not explained by the postulated model,
have a direct effect on Y.

2. X, is only influenced by X, not by Z and Y.

3. Y, is influenced by Z and X,, but also by Y.

If all variables were continuous, this causal path model could be tested
by means of regression analyses for the independent variables Y,, X,,
and Y,. For discrete dependent variables, Goodman (1973) proposed a
modified path analysis approach in which a logit equation instead of a
regression equation is specified and tested for each dependent variable.
In the analysis of discrete variables observed in a longitudinal design,
it may also be interesting to study models that combine homogeneity
hypotheses and hypotheses about the causal relations between the
variables involved. For instance, for the causal model represented by
Figure 1, one could ask whether, in addition to the restrictions implied
by the causal model, the conditional distributions of Y given (X, Z) are
the same at the two measurement points. If one succeeds in developing
a causal model in which the number of parameters is further reduced
by making some homogeneity assumptions, the final result is a more
parsimonious model with a smaller number of parameters to interpret.
Combining causal models with homogeneity assumptions would also
yield substantively more interesting or informative results, since a
joined test of both types of models puts more constraints on the data.
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X > X,

Figure 1:  Causal Model 1

This article will discuss how for discrete data homogeneity assump-
tions can be tested, either on their own or in combination with assump-
tions that pertain to the causal order between the variables. In general,
tests of the homogeneity hypotheses discussed above are not possible
by means of a log-linear analysis, since they involve constraints on the
expected frequencies themselves rather than constraints on log-linear
parameters. However, they can be tested by means of a generalization
of log-linear modeling for categorical data as proposed by Lang and
Agresti (1994).

Interestingly enough, all the hypotheses considered in this article
could also be tested by means of the generalized least squares proce-
dure proposed by Grizzle, Starmer, and Koch (1969). However, their
procedure often breaks down for sparse tables (Agresti 1990:462).
Moreover, it does not yield estimates of the expected frequencies, so
that if a particular model fits the data poorly, no residuals are available.
Because an analysis of residuals may indicate how to modify the
model, an estimation procedure that yields estimates of the expected
frequencies and their standard errors is to be preferred. The maximum
likelihood procedure proposed by Lang and Agresti (1994) is such a
procedure. Moreover, this maximum likelihood procedure is less vulner-
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able (but certainly not completely immune) to zeros in the observed
contingency table.

The structure of the remainder of this article is as follows. In section
2, the principles of generalized log-linear modeling as proposed by
Lang and Agresti (1994) and further extended by Lang (1996a, 1996b)
will be discussed. In sections 3 and 4, it will be shown how homogene-
ity assumptions and assumptions following from modified-path models
can be tested by means of generalized log-linear analysis. Section 5
will discuss how homogeneity hypotheses and hypotheses about the
causal relations between the variables can be tested simultaneously.
Section 6 contains an application of a generalized log-linear model to
data obtained in a two-wave panel study. Although this limited exam-
ple does not show all the possibilities of generalized log-linear model-
ing in the analysis of discrete longitudinal data, it illustrates some of
its flexibility. The article ends with a short discussion.

2. GENERALIZED LOG-LINEAR MODELING

Suppose that in a longitudinal study, K discrete variables are mea-
sured on a sample of N subjects. Some of these measurements may
refer to the same variable measured at different time periods, whereas
other measurements may refer to variables that are measured only once
(and hence considered as time invariant). Letting m, be the number of
response categories for measurement &, the number of different response
patterns is equal to M =TTx m,. A particular response pattern will be
denotedby i=(i, ..., i).Letn=(x,..., ), where T is the probabil-
ity that a randomly selected subject will have response pattern i. The
vectorf=(f, ..., f,) contains the observed frequencies. In the remain-
der of this article, it is assumed that f follows a multinomial distribu-
tion with probabilities 7 and fixed sample size N. The expected fre-
quencies of the response patterns with respect to a particular model
will be denoted by p= (W, . . ., 1, ). They should satisfy the constraint
2 M, = N. It will be assumed that p > 0, that is, that all expected fre-

k
quencies are strictly positive.
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Log-linear models impose a linear structure on logp = (logp.,, . . .,
logl, ); that is, it is assumed that for some specified design matrix X,
one may write

logy = XB o

for some vector  of unknown parameters. The matrix X can always be
chosen so that it is of full column rank. Let U be a full column rank
matrix such that the vector space spanned by the columns of U is the
orthocomplement of the vector space spanned by the columns of X.
One then has w = Xa for some a if and only if w'U = 0. Hence, it follows
that X’U = 0. Model (1) can then equivalently be specified by the
constraints

U'logp = 0.

Log-linear models can thus be formulated in two equivalent ways.
In the first kind of formulation, the natural logarithms of the expected
frequencies are written as functions of the unknown log-linear param-
eters. In the second kind of formulation, the same log-linear model is
specified by means of the constraints it imposes on the expected fre-
quencies. As a simple specific example, consider the independence
modelin a2 x 2 table. First, it can be written log linearly in the follow-
ing way:

100
Bo
M2 - 101 B
B | |1 10 Bl
YR UR IR YN

But, equivalently, the same log-linear model is completely speci-
fied by the single constraint it imposes on the expected frequencies:

logw,, — logy,, —logu,, + logy,, = 0.
In this example, one has

U'=1 -1 -1 1.
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Taking antilogarithms, the constraint on the logp terms is equivalent
to the well-known definition of independence in a 2 X 2 table in terms
of an odds ratio:

T _y
oMoy

The generalization of log-linear modeling considered by Lang and
Agresti (1994) imposes the following linear structure on the expected
frequencies:

ClogAp = XB, 2)

in which it is assumed that all elements of the vector Al are strictly
positive. If the columns of matrix U again span the null-space of X,
model (2) is equivalent to

U'ClogAp =0. 3)

Generalized log-linear analysis makes it possible to define contrasts
between linear combinations of expected frequencies, instead of con-
trasts between single expected frequencies themselves.

In some applications, the matrix X may be a null matrix; then,
matrix U is an identity matrix of appropriate dimensions and the con-
straints on the expected frequencies can be stated as

ClogAp =0.

Lang and Agresti (1994) discussed how to obtain the maximum likeli-
hood estimates of the unknown expected frequencies under the con-
straints given by equation (3) and by the single sampling constraint
Y1 = N. The maximum likelihood estimates determine a stationary
point of the augmented log-likelihood function

flogn — N U'ClogAp — 1(1'w = N)

with respect to the unknown expected frequencies [ and the unknown
Lagrange multipliers in A and t. (The row vector 1’ consists of the
appropriate number of 1s to represent the multinomial sampling con-
straint.) Because this optimization problem has in general no closed-
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form solution, a Newton-Raphson iterative scheme is implemented to
obtain the maximum likelihood estimates. Lang and Agresti (1994)
also discussed the asymptotic behavior of the estimators and proposed
some goodness-of-fit tests. More technical details on their algorithm and
the statistical properties of the estimators can be found in their article.
Here, it suffices to state that, at least for nonsparse data matrices, the
goodness of fit of a particular model can be tested against the general
multinomial alternative by means of an asymptotic log-likelihood ratio
test. The number of the degrees of freedom for this test is equal to the
number of constraints imposed by the model on the expected frequen-
cies. Moreover, if a nonsaturated model is nested within another model,
the more restricted model can be tested against the less restricted one
by means of a conditional log-likelihood ratio test. The number of the
degrees of freedom for this conditional test is equal to the difference
between the degrees of freedom for the unconditional tests for each
model against the general saturated model. Lang and Agresti (1994)
also derived asymptotically valid expressions for the standard errors
of the estimated values of the expected frequencies W, the model
parameters P, and the residuals f — L.

More recent work by Lang and others has shown that generalized
log-linear analysis has many potential applications in the field of
multivariate analysis of discrete variables. Lang (1996a) further
extended generalized log-linear modeling for the simultaneous analy-
sis of data obtained from different populations. Lang (1996b) studied
the conditions under which the goodness-of-fit statistic can be parti-
tioned according to two subhypotheses that are tested simultaneously
in a generalized log-linear analysis. In section 6, these conditions will
be discussed in the context of the specific application of the general-
ized log-linear model. Lang and Eliason (1997) used the generalized
log-linear model in the analysis of social mobility tables. A still fur-
ther generalization of log-linear modeling is described in Bergsma
(1997), who discussed how to test invariance of various association
coefficients over time.

In the next section, it will be shown how various homogeneity
assumptions can be recast in terms of the Lang-Agresti generalization
of log-linear modeling.
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3. SPECIFYING HOMOGENEITY ASSUMPTIONS

3.1. HOMOGENEITY ASSUMPTIONS
FOR MARGINAL DISTRIBUTIONS

A first class of research hypotheses that can be studied in a longitu-
dinal design pertain to the question of whether the marginal distribu-
tions of a set of repeatedly measured variables change over time. Ques-
tions of this kind often arise within the context of comparative research
in which the rate of change in some characteristic is studied in differ-
ent groups or subpopulations. If there is change over time in the distri-
bution of the same variable in all subpopulations, a natural question to
ask is whether all groups show the same amount of change. By means
of a limited number of more specific examples, it is shown below how
research hypotheses of the kind considered above can be tested by
means of a generalized log-linear analysis.

Example 1

Suppose that the same discrete variable X with m response catego-
ries is measured at two time periods. The expected frequencies can be
written as a vector

B=(ps k2 s B3 s Mmoot s s Bmet,m s Homm)

in which p, is the expected frequency associated with the joint event
(X, =1, X,=J). (Note that in this vectorized notation, the last subscripts
change the fastest. This convention will be used throughout this
article.)

The assumption that the marginal distribution of X did not change
over time implies that

DMy =Z“ﬁ
j j

holds for all i. Thus, the ith row sum of the contingency table should be
equal to its ith column sum. Using the shorthand notation with the +
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sign indicating variables over which the pattern probabilities have
been summed, one can write the previous set of constraints as

B, = W, )

Of course, one could eliminate the common diagonal element ; from
both sums to obtain as constraints

Z“ij =Z“ﬁ.

J# J#i

In the remainder of this article, the shorthand notation (implying sum-
mation over the entire range of scores for the relevant variables) will
be used.

Equation (4) can also be stated in terms of a contrast between the
logarithm of two sums of response probabilities:

logp,, —logp,, =0

for all i. Because the sum of all expected frequency is equal to the
number of observations, only m — 1 such contrasts need to be defined.

As a specific example, consider the test of marginal homogeneity in
a3 x 3 table. To apply the Lang-Agresti algorithm, the matrices A and
C should then be defined as follows:

11100000O00O0
A=1 00100100

000111000

01 0010O0T10O0
C=1 -1 0 0)

0 0 1 -1

In this application, the design matrix X is a null matrix of order 2 x 1.
Note also that because of linear dependence, the contrast based on the
third row and column sum need not be considered in the construction
of the matrices A and C.
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Example 2

Suppose the same polytomous variable X is measured twice in dif-
ferent subpopulations or groups. Let G be the number of different
groups, with a particular group denoted by g. The expected frequencies
are represented by M The hypothesis of overall univariate homoge-
neity of X can be tested by imposing contrasts of the following type:

logu,,, —logu,,,=0.

The hypothesis of univariate homogeneity in a particular subpopulation
g can be tested by imposing constraints such as

log“’gh— - logl"lgH = 0'

If the hypothesis of univariate homogeneity has to be rejected in each
subpopulation, it may be interesting to test whether each subpopulation
changed to the same extent. The hypothesis of equal change may be
tested by imposing contrasts of the following type on the expected fre-
quencies for two different groups g and A:

logugn - log!»lg,,- - logl’% + log“'hﬂ' =0.

Example 3

Assume that a polytomous variable X is measured at three time
periods, with the expected frequencies given by .. Univariate homo-
geneity is satisfied if

ui++ = l’l‘+i+ = ,J‘Hi

holds. These constraints can easily be imposed in a generalized log-
linear model by defining two contrasts,

logp,,, —logp,,, =0

10gu+i+ - logu‘ﬂx = O’

foreachi:1<i<m-1.
However, in situations where the same variable is measured three or
more times, other interesting homogeneity hypotheses may be consid-
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ered. One of them is the hypothesis that the bivariate distribution of
two consecutive measurements does not change over time. In the pres-
ent example, this is equivalent to assuming that

ui]# = “’ﬂ']’

which also leads straightforwardly to the set of constraints

Example 4

Let X and Y be two polytomous variables, each measured twice.
The expected frequencies are represented by My in which the vector
(ijkl) of subscripts refers to the jointevent (X, =i, Y =7, X, =k, Y, =1).
Bivariate marginal homogeneity is obtained if the joint distribution of
X and Y remains the same over time, that is, if the following contrasts

are satisfied:

log“‘ijﬂ - loguHU = 0

for all pairs (i, j) of scores on (X, Y).

3.2. TESTING INVARIANCE OF ASSOCIATION

In the previous example, the hypothesis that a particular bivariate
distribution remained the same over time was tested. In many social
science applications, this hypothesis will not be tenable. In such a
case, one may be interested in the weaker hypothesis that the associa-
tion between the variables as measured by the local odds ratios does
not change over time.

Example 5

Let, as in Example 4, two discrete variables X and Y be measured
twice, and let the joint distribution of the four measurements be repre-
sented by P_ . In an m X m, contingency table for two nominal vari-
ables X and Y, the association between the two variables is often
described by means of local odds ratios
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Pr(X =i,Y =j) Pr(X =7,Y = j')
Pr(X =i,Y =) P (X =i’,Y = j)

To obtain a complete set of independent odds ratios, from which all
other odds ratios can be derived, it suffices to take i’ =i+ 1 and j’ =
+1,withi=1,...,m—1landj=1,...,m,- 1. Then, the hypothesis that
the association between X and Y does not change over time is equiva-
lent to the following constraints on the expected frequencies:

Hivt jat,+,+Hijo e Hoint, B 4

Hivt, jo+,+ M, i+ B e, jHa 4 4

These restrictions can be translated in terms of contrasts on the loga-
rithms of sums of expected frequencies:

1Oglvli+1,j+l,+,+ +log M j+,+ —log Hist, j+,+ —log Wi i1+, +

—logHy y s, je1 ~108My 4 HlogH, iy j+logHy iy =0

Example 6

For ordinal variables, it may seem more natural to define the struc-
ture of association in terms of global instead of local odds ratios (Dale
1986). In an m, X m, contingency table with ordered categories, a global
odds ratio is defined for each pair (a, b) of categories with 1 <a<m -1
and 1 £b <m, -1 in the following way:

_Pr(X<a,Y<b)Pr(X>a,Y >b)
Pr(X>a,Y <b)Pr(X<a,Y >b)

a,b

In a longitudinal study where the same pair of variables is measured
twice, one may define global odds ratios y,,, and vy, ,, for the mar-
ginal distributions of (X, Y) at the two time periods. It is easy to see that
the hypothesis of equal global odds ratios can be tested by defining
contrasts of the following kind:

logWa,b‘l - 1og\lf,,,b,z =0,

which at the end can be defined as contrasts between the logarithms of
sums of expected frequencies.
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3.3. HOMOGENEITY OF CONDITIONAL DISTRIBUTIONS

In some social science applications, the investigator may be inter-
ested in the question whether certain conditional distributions are con-
stant over time.

Example 7

Let X and Y be two variables measured twice, and assume that X
may be thought of as acting as an independent variable that has a
causal effect on the dependent variable Y. In an attempt to prove that
changes in Y are caused or explained by changes in X, it may be inter-
esting to test whether the conditional distribution of Y given X remains
invariant over time. If the latter hypothesis can be accepted, then
changes in Y cannot be explained by changes in the effect that X has on
Y. Equality of the conditional distribution of Y given X can now be
stated as follows:

ui,j,+,+ _ u+,+,i,j
- ’
Hiv e+ M s+

which also can be written as a contrast between the logarithms of sums
of expected frequencies.

3.4. SOME EQUIVALENCES

Because the joint distribution of two random variables X and Y is
uniquely defined if the univariate distribution of X and the conditional
distribution of Y given X are specified, bivariate marginal homogene-
ity for the distribution of (X, Y) is equivalent to the conjunction of
homogeneity of the conditional distribution of Y given X and univariate
homogeneity of the distribution of X.

Similarly, the same joint distribution is also uniquely defined if
both the univariate distributions of X and Y are specified and either all
local or global odds ratios (Dale 1986) are given. Hence, bivariate
marginal homogeneity is also equivalent to the conjunction of univariate
homogeneity for the distributions of both X and Y, and of equality of
either the local or the global odds ratios.
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3.5. GENERAL REPRESENTATION OF HOMOGENEITY CONSTRAINTS

All the different kinds of homogeneity assumptions that have been
considered hitherto can be represented as contrasts between the loga-
rithms of sums of expected frequencies. Let M= {1,2,..., M} denote
the index set representing the response patterns. With each contrast o
corresponds a set of n_ subsets of M:

(M, M, ..., M,).

With each of these subsets M, there corresponds a weight c,, that is
either 1 or —1. Using this notation, each contrast can be written as

na
nz___lcom ]og(ieg'i:,, i )=O'

By appropriately defining matrices A, C, X, and U, constraints of this
kind can easily be handled by the Lang-Agresti algorithm. Note that C
and A should be conformable matrices: If Cis of order r, X r,, then A is
of order r, X r,. Moreover, in this application the matrix X is a
r,-dimensional zero vector. As a consequence, U is a r, X r, identity
matrix. Note, however, that combining different homogeneity con-
straints in a single analysis may lead to a situation in which some of the
constraints are mutually redundant or incompatible. This problem
will be discussed more thoroughly below.

4. MODIFIED PATH MODELS FOR DISCRETE VARIABLES

Goodman (1973) introduced modified path models for the causal
analysis of discrete variables when that all variables involved are ob-
served. Basic to Goodman’s modified path models is a set of logit equa-
tions relating a set of explanatory variables to a sequence of response
variables. Because the causal order among the response variables can
be taken into account, previous responses can act as explanatory vari-
ables for responses that occur later in the causal chain. More recently,
a similar class of models was described by Gilula and Haberman
(1994, 1995). Hagenaars (1990) discussed an extension of the modified
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path approach in which some of the variables are unobserved. In gen-
eral, a modified path model is not equivalent to a single log-linear
model defined on the total table; instead, it is equivalent to a conjunc-
tion of several log-linear models defined on various subtables, includ-
ing the total table itself. As a consequence, any modified path model
can be formulated as a generalized log-linear model.

4.1. SOME EXAMPLES

Figure 2 shows a path diagram of a causal model for four variables
A, B, C, and D. It is assumed that all four variables are dichotomous.
The arrows between two variables indicate in which direction the
causal influences run.

Causal models of this kind imply a particular decomposition of the
joint probability distribution p ,  of the four variables. For four vari-
ables A, B, C, and D, one may decompose their joint distribution in a
tautological way as the product of a set of conditional distributions:

Puascd = PaPbiaP sab Patase

Because the causal model shown in Figure 2 deletes the direct arrow
from A to D, it implies the nontautological decomposition

Pabcd = PuPbiaP cap Pane:

Moreover, in Goodman’s modified path approach, it is always
assumed that the conditional probabilities satisfy a main effects logit
model. For the present example with its four dichotomous variables,
this further restricts the model in the following way:

logit(BIA = a) =, + B,a
logit(CIA=a,B=b)=Y,+Ya+Y,b
logit(DIB=b, C=c¢)=3,+ d,b + d,c,
with, in general,

logit (Y] X =x) =1n(w].

Pr(Y =0|X =x)
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B

O

Figure 2:  Causal Model 2

The modified path model represented by Figure 2 is equivalent with a
single log-linear model defined on the total four-dimensional contin-
gency table. Figure 3 represents this log-linear model in the form of a
diagram with undirected edges.

This model, which will usually be denoted as [AB, AC, BC, BD,
CD], is easily derived from Figure 2 by converting the directed arrows
into undirected edges.

In general, however, a modified path model will not be equivalent to
a single log-linear model for the total table, but will be equivalent to
the intersection of several log-linear models that pertain to various
marginal tables that display the joint response frequencies for each
response variable and its causes in the causal model. Consider the
causal model shown in Figure 4.
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B

Figure 3: Log-Linear Model 3

Compared to the model shown in Figure 2, a single arrow from A to
D has been added. This model implies the following decomposition of
the joint probability distributionp , :

Pabca = PaPbaP cab P aaber
with the last logit equation altered to
logittDIA=a,B=b,C=c)=8,+3,a+8b+d,c.
This model is definitely not equivalent to the log-linear model
[AB, AC, AD, BC, BD, CD],

which is shown in Figure 5.
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Q

Figure 4: Causal Model 3

The modified path model is equivalent to the intersection of the fol-
lowing log-linear models. One pertains to the total table (A, B, C, D),
and the other pertains to the marginal table (A4, B, C):

1. Intable (A, B, C), the model [AB, AC, BC] is satisfied.
2. Intable (A, B, C, D), the model [ABC, AD, BD, CD] is satisfied.

The latter example illustrates the fact that in general, modified path
models cannot be tested by a single log-linear analysis.

4.2. ESTIMATING MODIFIED PATH MODELS
BY THE LANG-AGRESTI ALGORITHM

Goodman (1973) showed how the iterative proportional fitting
algorithm for fitting log-linear models on total tables can be used to fit
the intersection of log-linear models defined on the total or marginal
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B

Figure S: Log-Linear Model 3

tables. Gilula and Haberman (1994, 1995) estimated the parameters of
what they called conditional log-linear models by means of an itera-
tive Newton-Raphson procedure.

Here, it will be shown that modified path models can also be esti-
mated and tested by a generalized log-linear analysis. The main
advantage of this approach to the estimation of the parameters of a
modified path model is that it can easily be extended to cases in which
the modified path model itself is combined with other type of hypothe-
ses on some marginal or conditional distributions. Neither Goodman’s
(1973) approach nor the approach advocated by Gilula and Haberman
(1994, 1995) can be used when estimating the parameters of such a
modified path model.

Consider first the estimation of the modified path model repre-
sented by Figure 4 and assume that all four variables involved are
dichotomous. Several vectors and matrices have to be defined. Let the



216  SOCIOLOGICAL METHODS & RESEARCH

vector p contain the expected frequencies p , , with the last subscript
changing the fastest:

“ = (uOOOO’ "‘I’OOOI’ p’OOlO’ DR “mo’ p’llll)'

The log-linear model for the marginal (A, B, C) table can be imple-
mented in the following way. First, an 8 x 16 matrix A, is defined as
follows:

>

1l
S O O = O O © O
S O O = O O O O
S O = O O O O C©
S O = O O O O O
S =, O O O O © C©
SO =, O O O O © O
- o O O O O © ©
- O O © O o © ©

S O O © O O O =
S © O o o o o =
S O O o O O = O
S O O O o o ~= O
S O O O o = O O
S O O o O = O O
S © © o = O © O
S O oo = O O O

The product A, gives the expected frequencies for the marginal (A, B,
C) table. Next, one defines C, = I; , ; and

1000O0O0O0
1001000
1010000
X1=10 11001
1100000
1101010
1110100
1111111

The one-dimensional null-space of X is then spanned by the matrix
u=1,-1,-1,1,-1,1,1,-1).

To represent the log-linear model for the total table, the definitions
of the matrices A and C are simple: A,=C, =1 .. The model design
matrix X, is of order 16 x 12. Apart from the constant column corre-
sponding to the overall log-linear parameter, the columns of X, corre-
spond to the four main effects, the six two-variable interaction effects,
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and the one three-variable interaction effect for the triple (A, B, C).
The null-space of X, is spanned by the columns of a 16 X 4 matrix U,

Finally, to implement the simultaneous analysis of the marginal
and total log-linear models, the following supermatrices have to be
defined:

C= G Ogx16
Oy C»
U= Uy Ol,xl6 '
04><8 U2

4.3. SOME GENERAL CONSIDERATIONS

In general, modified path models can be characterized in the fol-
lowing way. In any modified path model, the set of explanatory exoge-
nous variables x ={X;,X,,..., X } is assumed to exercise in a well-
specified manner causal influences on the set of endogenous response
variables Y ={Y,,..., Y, }. The association among the exogenous vari-
ables is not explained by the modified path itself. In general, the asso-
ciation structure among the exogenous variables is not further speci-
fied. For discrete variables, it is usually assumed to satisfy the saturated
log-linear model, although in the search for a more parsimonious
model one might consider more restricted log-linear models for their
association without considering hypotheses on their respective causal
ordering. The set of dependent variables in Y, on the other hand, can
be ordered with respect to causal priority. In the sequel, it is assumed
that the response variables are indexed in such a way that Y is causally
prior to Y, which itself is causally prior to Y, and so on. The last variable
in the causal chain is then Yp.

For each dependent variable, Y, there exists a subset of explanatory
variables S, < % and a subset of causally prior response variables
T, <{¥,...,Y,}, which are assumed to be direct causes of Y. For
each Y, a logit model is specified in which all variables from
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C, =T, US, are directly linked to Y. The part of the modified path
model that corresponds to Y, is then equivalent to a hierarchical log-
linear model on the marginal table defined for the variablesin{Y, }UC, .
This log-linear model contains in the first place all the main and inter-
action effects that can be defined for the variables in C, . Furthermore,
it contains the two-variable interaction effects that can be defined by
pairing Y, to each variable in C, . As an example, suppose that in a par-
ticular modified path model, Y, is influenced by X, X,, and the prior
response variable Y, but not by the prior response variable Y, then the
log-linear model for the marginal table (X, X,, Y, ¥)) is the model
XX,)Y, XY, XY, Y]

To estimate the modified path model by means of a generalized
log-linear analysis, appropriate matrices A, C,, and X, have to be
defined for each logit model. By means of the matrix A , one defines
the expected frequencies in the marginal table that corresponds with
the kth logit equation. The matrix C, is always an identity matrix with
the appropriate dimensions. The design matrix X, defines the log-linear
model that corresponds with the kth logit equation. The matrix whose
columns span the null-space of X, is U,.

The complete modified path model is then equivalent to the inter-
section of all log-linear models that correspond to the set of logit equa-
tions. For a generalized log-linear analysis, one needs to define the fol-
lowing supermatrices:

A
A,
A=
AP
and
U=eU,,
X k

in which @ represents the direct sum of matrices:
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2 M
oM, =" 9.
k=1 0 M2

Note that this way of combining various log-linear models defined on
different marginal tables derived from the same total table is only valid
if the parameter spaces of the different log-linear models do not inter-
sect. By formulating equality constraints on log-linear parameters
from different submodels, the different parameter spaces would have
common elements. In that case, the Lang-Agresti algorithm can still
be used, but now one has to create a supermatrix X that incorporates
the assumed equality constraints. The final U matrix, then, contains
the basis of the null-space of X.

The maximum likelihood estimates of the expected frequencies
under the modified path model are now determined by maximizing the
log-likelihood function under the constraints

U log An=0.

5. COMBINING MODIFIED PATH MODELS
AND HOMOGENEITY ASSUMPTIONS

The strength of the generalized log-linear model for the analysis of
contingency tables resides in the fact that several log-linear or linear
models defined on partial or marginal tables and on the total table can
be fitted simultaneously. Consider the model represented by Figure 6.
The four variables involved in this modified path model correspond to
an independent variable X measured at two time points and a depen-
dent variable Y also measured twice at the same time points. The four
variables involved in this model are represented by X, X,, Y,, and ¥,.
The model assumes that the independent variable X, has a direct effect
on the dependent variable Y, and on the independent variable X,. The
independent variable Y, depends causally on X, and on the value of Y. In
this model, X, is the only exogenous variable; all three other variables
are endogenous. The modified path model represented by Figure 6 is
equivalent to the intersection of the following two log-linear models:
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1. Inthemarginal table (X}, Y, X;), log-linear model [X,Y;, X, X,] holds.
2. Inthe total table (X}, Y}, X,, Y,), log-linear model [X,Y,X,, Y,Y,, X,Y,]
holds.

The modified path model described above allows the investigator to
assess how strongly scores on a response variable are related to certain
explanatory variables and to prior response variables. In longitudinal
studies, it might also be interesting to investigate whether changes in
the dependent response variables are caused by changes in some inde-
pendent variables. In this context, one could consider the hypothesis
that the conditional distribution of the dependent variable given the in-
dependent variables remains constant over time. In the present exam-
ple, this implies testing the equality of the conditional distributions of
Y, given X, and of Y, given X,. In terms of marginal distributions de-
fined on the total table containing the expected frequencies 1, for the
random vector (X, Y,, X,, Y,), the equality of these two conditional dis-
tributions leads to the following constraints:

“’i,j,+,+ _ u+,+,i,j

H.-,+,+,+ “'+,+i

for all i and j. As discussed in a previous section, homogeneity condi-
tions of this kind can easily be handled by the generalized log-linear
model. Moreover, they can be combined with the constraints implied
by the formal structure of a modified path model. Let the pair of matri-
ces (A,, U)) characterize the constraints implied by the modified path
model, and let the pair of matrices (4,, U,) characterize the constraints
implied by the homogeneity assumptions. Then, the model that is the
combination of both submodels is characterized by the matrices

A2
andU=U, @U,.

A potential problem with combining different models in a simulta-
neous analysis is that they may contain redundant constraints. Lang
(1996b) discussed this problem and formulated a general condition
that is sufficient to ensure nonredundancy. In the present context of
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X, Y
X,

Figure 6: Causal Model 3

combining a homogeneity model and a path model, this condition
leads to the following result.
Let D, and D, be diagonal matrices containing the elements

fromA p and AN Deﬁne the matrices
H,=U{D, A,
and
H,=U;D, A,

If the matrix H=(H,:H,) is of full column rank, the constraints
implied by the two different models are nonredundant.

In general, the constraints implied by a marginal model and by a
path model will be nonredundant. Only in special cases will a homo-
geneity hypothesis be implied by a log-linear model. An example of a
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situation in which a log-linear model implies marginal homogeneity is
the following. Consider a R X R table in which a symmetric indepen-
dence model is being fitted. This log-linear model, which can be writ-
ten in a multiplicative form as ju, = B +B,, implies marginal homogene-
ity p_ = 1 . Hence, in this model the marginal homogeneity con-
straints are redundant given the constraints implied by the log-linear
model.

Note, however, that redundancy can also arise within each group of
constraints itself. For example, the log-linear model [AB, C] for the
three-dimensional table (ABC) implies independence between A and
C in the two-dimensional table (AC). So, each group of constraints
should also be checked on its own for redundancy.

6. APPLICATION

In a large-scale survey titled Social Security: Research on Demo-
graphic and Psychological Aspects, sponsored by the Dutch Ministry
of Education, several social and psychological effects of unemploy-
ment were studied. The data for a sample of 427 respondents refer to
the variables labor market status (1 = unemployed, 2 = employed) and
structuration of daily activities (1 = poor structuration, 2 = good
structuration) measured at two time points. In the sequel, the variable
labor market status will be denoted by X and the variable structuration
of daily activities will be denoted by Y. Table 1 gives the 2 X2 x 2 x 2
contingency table for X, ¥, X, and Y.

By means of the generalized log-linear model, several hypotheses
were tested on these data. All the analyses reported in this section used
specific software that was developed in Mathematica. A listing of the
Mathematica source code for maximum likelihood fitting of the class
of models described in this article can be found in Bergsma (1997,
appendix E).

A first series of tests were concerned with several homogeneity
hypotheses. The first homogeneity hypothesis concerned whether the
joint distribution of (X, Y) remains the same over time. Using the nota-
tion introduced earlier, one tests the hypothesis that the equality
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TABLE 1: Response Patterns and Their Frequencies

1111 41 2111 1

1112 23 2112 2
1121 12 2121 39
1122 17 2122 28
1211 20 2211 2
1212 48 2212 2
1221 2 2221 22
1222 25 2222 143

holds for all pairs of scores (i, j) on the variables (X, Y). The null
hypothesis that the joint distribution of (X, Y) is invariant over time had
to be rejected with L?=45.3102 with 3 degrees of freedom (p <.001).

Note that the same hypothesis can also be tested by testing for row
and column homogeneity in the 4 X 4 table formed by taking the four
different response patterns on the joint variables (X, Y) as the catego-
ries of anew variable. In this way, the rows of the 4 x 4 table would cor-
respond to the measurements at the first time point; its column would
correspond to the measurements at the second time point. However,
the outcome of the homogeneity test on this new table would be
exactly the same as that of the test that was actually performed on the
2* table.

The second homogeneity hypothesis concerned whether the
univariate distributions of X and Y were invariant over time. Testing
univariate homogeneity for X tests whether

“‘HH = uui#

for all scores i on X. Similarly, for Y one tests whether

l»hju = u«ﬁ‘

holds for all scores j on Y.

For the data at hand, both hypotheses of univariate homogeneity
had to be rejected. The value of L? was equal to 43.3837 for the distri-
bution of X and 5.0016 for the distribution of Y. Both tests are with 1
degree of freedom and significant at the 5 percent level. The simulta-
neous test of both homogeneity hypotheses yielded L* = 45.0984,
which with 2 degrees of freedom is highly significant.
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Table 2, which gives the joint distribution of the scores on X for the
two time periods, clearly shows that many more people change from
unemployment to employment than the other way around. Table 3,
which gives the joint distribution of the scores on Y for the two time
periods, shows that there is also a significant change in the proportion
of people reporting well-structured daily activities.

Both hypotheses of univariate homogeneity could also have been
tested by McNemar’s (1947) test for the difference between correlated
proportion, or by Bhapkar’s (1966) variant of it. The results of these
alternative tests were similar to those reported above. McNemar’s test
(with 1 degree of freedom) was equal to 38.11 for variable X and 4.97
for variable Y. This similarity between the outcomes of the two test
procedures should not come as a surprise, since McNemar’s test is a Wald
test statistic that is asymptotically equivalent to the log-likelihood
ratio test (Agresti 1990:359-60).

Note also that the univariate marginal distributions of X, and Y, are
exactly identical in these data. However, this is a mere coincidence in
the data and cannot be given a substantive interpretation.

In athird analysis using the generalized log-linear model, we tested
the hypothesis of whether the association (as measured by means of
the odds ratio) between X and Y remains the same over time. For the
present data, this hypothesis is equivalent to the constraint that the
expected frequencies satisfy

MirsMoots _ HesiBasn

Hize+Botee Hasnzbison

The null hypothesis of no change in association between X and ¥ could
not be rejected, since L?*=0.0101 with 1 degree of freedom. Inspection
of the data matrix showed that the observed odds ratios were almost
identical at the two time points: 2.3635 at the first and 2.4234 at the
second time point.

Finally, in a fourth analysis, we tested the hypothesis of whether the
conditional distributions p(¥1X = 1) and p(Y1X = 2) remain the same
over time. For the present data, this hypothesis is equivalent to the fol-
lowing two constraints on the expected frequencies:
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TABLE 2: Labor Market Status at Time 1 and Time 2

X,=1 X,=2

X, =1 132 56 188

X, =2 7 232 239
139 288 427

TABLE 3: Structuration Activities at Time 1 and Time 2

Y, =1 Y,=2
Y,=1 93 70 163
Y,=2 46 218 264
139 288 427

Hiz++ =M++12
Hiver  Hosrs

H24r _ His
Roris Kooy

The null hypothesis that the two conditional distributions are invariant
over time could not be rejected: the analysis yielded L* = 2.1392,
which with 2 degrees of freedom corresponds to a probability level of
p =.343.

The conclusion to the analyses based on various homogeneity assum-
ptions is that the univariate distributions of both the independent variable
X and the dependent variable Y change over time, but that the condi-
tional distributions p(Y1X = 1) and p(Y1X = 2) are invariant. Conse-
quently, the strength of the association between both variables, as mea-
sured by the odds ratio, is also invariant over time.

A second series of analyses studied whether the relations between
the four variables could be explained by means of a particular causal
model. The model being tested consisted of two separate causal hypo-
theses and is shown in Figure 6. First, it was assumed that labor market
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status at time point 1 has a direct effect on structuration at the same
time point and a direct effect on labor market status at time point 2.
This part of the model is equivalent to the log-linear model [X Y, X X ]
in the three-dimensional table (XY X)). Second, it was postulated that
structuration at time point 2 is affected by structuration at the previous
time point 1 and by labor market status at time point 2. This part of the
model is equivalent to the log-linear model [X . Yle, Y : Y, X2Y2] in the
total table (X,Y X)Y)).

This modified path model was fitted to the data by means of the
Lang-Agresti algorithm. The model provides an excellent fit to the
data, since the analysis resulted in a test statistic of L? = 8.1506, which
with 7 degrees of freedom corresponds to a probability level of p =
.320. The estimated logit equation is

logit(¥, |y, ,x,) =~3.46+ 178y, +0.75x,.

The standard errors of the coefficients of Y, and X, are 0.23 and 0.24,
respectively. Both coefficients are significantly different from zero at
the 1 percent level.

The same model could also have been tested by means of the proce-
dure described in Goodman (1973) and Gilula and Haberman (1994).
In this procedure, the two log-linear models are fitted separately to the
two tables and the two L? test statistics and the degrees of freedom for
each model are added to obtain the overall L* value and the total
degrees of freedom. The results of this more classical approach to test-
ing modified path models are, of course, exactly identical to those
obtained by an analysis based on the generalized log-linear model.

As a final analysis, the modified path model given in Figure 6 was
combined with the assumption of homogeneity of the conditional dis-
tributions of Y given X. This model cannot be estimated by the proce-
dures proposed by Goodman (1974) and Gilula and Haberman (1995),
since the homogeneity constraints on the conditional distribution can-
not be translated into log-linear terms. (See, however, Vermunt [1997,
appendix F] for an adaptation of Goodman’s estimation procedure
that allows restrictions on the conditional probabilities.)

The analysis based on the generalized log-linear model resulted in
L*=10.2177 with 9 degrees of freedom (p = .333). The value of the
conditional log-likelihood ratio test of this model against the hypo-
thesis represented by the modified path model without the homo-
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geneity constraints is 2.0671, which with 2 degrees of freedom is not sig-
nificant. Adding the assumption of homogeneity of the conditional
distributions to the assumptions of the modified path model does not
worsen the fit in a significant way.

An interesting observation is that the value of L* for the combined
model is approximately equal to the sum of the values of L? for the sep-
arate models:

10.2177 = 8.1506 + 2.1392.

This quasi-equality could be an indication of the fact that the two mod-
els are asymptotically separable; that for large sample sizes the combi-
nation of the two models can be tested by adding the test statistics of
the two separate models. (See Lang [1996b] for a more thorough dis-
cussion of the concept of asymptotic separability and conditions that
ensure it.)

As to the parameter estimates under the combined model, the con-
ditional distribution of Y given X, which is held constant over time, is
given by the following conditional probabilities:

p(Y,=2IX,=1)=0.525
pY,=21X,=2)=0.736.

The conditional distribution of X, given X; is given by
p(X,=2IX,=1)=0.288
p(X, =2IX, =2) =0.965.

Finally, the conditional distribution of ¥, given X, and Y, satisfies the
following logit model:

1ogit(Y, |y »x,) =—332+177y, +0.75x,.

The standard error for the coefficient of Y, in the logit equation above
was equal to 0.23; the standard coefficient of X, in the same equation
was 0.17. Both coefficients are significantly different from zero at the
1 percent level. The estimated logit equation and the standard errors of
the coefficients from the joint analysis are similar to their counterparts
obtained in the previous analysis. Only the standard error of the co-
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efficient of X, becomes somewhat smaller in the joint analysis. The
two logit equations are similar because the extra homogeneity condi-
tions imposed during the joint analysis are well satisfied by the data.

7. DISCUSSION

This article has shown that various homogeneity models and log-
linear models, and combinations thereof, can be tested by means of the
generalized log-linear model described by Lang and Agresti (1994).
Although some of the models considered in this article can also be
tested by more classical or traditional methods, the generalized log-
linear model has a much broader scope and allows particular combina-
tions of the models being tested. The most interesting and promising
point of the generalized log-linear model is the fact that one may test
models that simultaneously impose linear constraints on the expected
frequencies and on their logarithms.

NOTE

1. Throughout this article, the term causal will be used somewhat loosely to denote asym-
metrical relationships between the variables. For more precise definitions of and views on cau-
sality, see, among others, Rubin (1974), Sobel (1995), and Pearl (1995).
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